

What does an accreting intermediate mass black hole look like?

Luminosity

- It could be bright
- $L_{Edd} = 4\pi GMm_p c/\sigma_T = 1.26 \times 10^{38} (M/M_{Sun}) erg/s$
- For a 100-1000 M_{Sun} accreting BH, L can be as high as 10^{40} - 10^{41} erg/s
- Finding a source so bright that it is super-Eddington for a stellar-mass BH may be a clue that the source is an intermediate-mass BH.
- ULXs are thought to be IMBH candidates.

But it need not be bright

- The actual value of L depends on m_{dot}
- L= $(\xi/0.1)(0.1 \text{m}_{dot} \text{ c}^2)$ = $(\xi/0.1)(\text{m}_{dot} / 10^{-8} \text{ M}_{Sun} \text{ yr}^{-1}) 5.7 \text{ x } 10^{37} \text{ erg/s}$
- The value of m_{dot} depends largely on the state of the donor and on the mechanism that fuels mass transfer. (e.g., gravitational radiation, nuclear evolution of the donor, irradiation of the donor)

Spectra

- If the accretion is mediated by a disk which is geometrically thin, but optically thick, the spectrum must be soft.
- kT_{lso} =42eV ((ξ /0.1) L_{obs} /3x10³⁷erg/s)^{1/4} (10³M_{Sun}/M)^{1/2} g
- $(M/10^3M_{Sun})=(42eV/kT_{Iso})^2 ((\xi/0.1) L_{obs}/3x10^{37} erg/s)^{1/2} g^2$ g is a factor of order unity.
- The above is a lower limit on M; spectral hardening, BH spin, and orientation effects, will increase the estimate for a given set of values for L and T.

- Note that the model may break down for L << L_{Edd}.
- One puzzle is: Why are ULXs not generally soft?
- It has been suggested that the high computed luminosities of some of these sources is due to beaming, not to a high-mass accretor (e.g., King et al. 2001).
- Some ULXs are soft (e.g., Mukai et al. 2003; Miller et al. 2003; Kong & Di Stefano 2003; Fabbiano et al. 2003).

Are There Soft X-Ray Sources in Galaxies?

- The answer is "yes": there are many.
- Some may be accreting WDs, some may be SNRs, etc.
- But a natural model for some is that they are accreting IMBHs.

Supersoft Sources and Quasisoft Sources

- SSSs are sources with kT ~ tens of eV, and with L typically between 10³⁶-10³⁸ erg/s.
- Some may be nuclear-burning WDs; some of these may be progenitors of Type Ia supernovae.
- We have developed a method to search for SSSs in external galaxies. (Di Stefano & Kong 2003 a,b,c)
- Each spiral galaxy is likely to contain over 1000 SSSs
- We have tested our algorithm on simulated data.

- All sources picked up in any but the first 2 steps are referred to as candidate
 Quasisoft Sources (QSSs).
- QSSs typically have 100eV < kT < 250 eV.
- Or else they have a softer dominant spectrum, but may include a small hard component.
- Are QSSs just an intriguing possibility?

- We have tested our algorithm on real data Chandra and some XMM-Newton from ~20 galaxies.
- We find SSSs and QSSs.

	PROPERTIES		FFF.
1121227	PROPERTIES	AND	3335

Galaxy	Туре	$N_{\rm H}$ ($\times 10^{20} {\rm cm}^{-3}$)	Mass (10° M⊙)	Size (arcmin)	M _{SH} (10° M⊙)	D (Mpc)	Exp (ks)	Date
M 31	SР	6.7	300	190'/60'	70	0.76	38.15	10/05/01
M 32	E2	6.3	3	8.7'/6.5'	2.9	0.81	46.46	7/24/01
M 33	Sc	5.6	390	70.8'/41.7'	0	0.94	46.85	8/30/00
NGC 3115	SO	4.3		7.3'/2.5'	1000*	9.7	37.45	6/14/01
NGC 5845	Е	4.3		0.87/0.57	240	25.9	30.25	5/24/00
NGC 1313	Sb	3.9		9.17/6.97			20.16	10/13/02
M 104	Sa	3.8	590	23.01/6.01	1100*	9.8	18.75	5/31/01
M 83	Sab	3.8	83	11.07/10.07		4.6	51.64	4/29/00
NGC 3379	E1	2.8		4.5'/4.5'	100°	10.6	31.92	2/13/01
48 M	E1	2.6		6.5'/5.6'	1600	18.4	28.55	5/19/00
NGC 4552	E	2.6		5.1'/4.7'	470	18.4	55.14	4/22/01
NGC 4649	E2	2.2		7.4'/6.0'	2000	16.8	37.35	4/20/00
NGC 4697	E4/E6	2.1		7.2'/4.6'	170	11.7	39.76	1/15/00
NGC +151	Sab	2.0	95	6.2'/3.9'	1 × 105 °	20.3	27.95	3/7/00
NGC ++72	E2	1.7		10.27/8.37			40.1	7/18/01
M 51	Sc	1.6	220	5.8'/4.6'	40	4.8	15.06	6/20/00
NGC 1399	E1	1.3		6.91/6.51			56.66	1/18/00
NGC 4258	Sbc	1.2	180	22.0'/9.0'	39	7.2	21.30	5/28/01
M 101	Sc	1.2	280	29.0'/27.0'		7.5	98.65	3/26/00

* Values from Kormendy 2000

GALAXY PROPERTIES AND \$555

Galaxy	N_X	Nyss	Nsss	Ness	N ₁ :55 N _X	N _{SSS} N _I 'SS	Noss Noss
M 32	L8	2	2	D	D. LL	L.D	0.0
M 3 L	93	16	LL	5	D. L7	0.69	D.31
M 33	34	6	3	3	D. 18	0.50	0.50
MIDL	LL3	43	32	LL	0.38	0.74	0.26
M 83	119	52	19	33	0.44	0.37	0.63
NGC 4258	38	9	3	6	0.24	0.33	0.67
NGC 3115	52	3	D	3	0.06	0.0	L.D
NGC 4697	72	16	3	L3	0.22	0.19	D.8 L
NGC 3379	42	6	D	6	0.14	0.0	L.D
NGC 1399	233	75	4	7 L	0.32	0.05	0.95
M5L	54	L3	3	LD	0.24	0.23	0.77
NGC 4472	L34	30	5	25	0.22	0.17	0.83
M L04	87	LD	4	6	D. LL	0.40	0.60
NGC 4552	103	LL	3	8	D. LL	0.27	0.73
NGC 4649	163	33	5	28	0.20	0.15	0.85
M 84	54	14	6	8	0.26	0.43	0.57
NGC 4151	27	4	3	L	0.15	0.75	0.25
NGC 5845	44	19	6	L3	0.43	0.32	0.68
NGC 1313	L7	2	L	L	0.12	0.50	0.50

SSSs

QSSs

Blue: QSSs M83 • M101 NGC4697 M51

What are the Quasisoft Sources?

- They are almost certainly not WDs.
- They may be accreting neutron stars of stellarmass BHs. In this case they are introducing us to a portion of the parameter space that has not yet been explored.
- The most natural explanation may be that they are accreting IMBHs.
- Note that they represent a simple extension of observed properties of Galactic BHs.

Whatever they are, the discovery of QSSs may be one of *Chandra*'s significant discoveries.

Accreting Intermediate-Mass Black Holes

- The first generation of stars was likely dominated by high-mass (~1000 M_{Sun}) stars.
 Their demise may have produced IMBHs.
- We don't know about the properties of any early binaries. But, if any old IMBHs are accreting today, the donors must be of low mass.
- Some ULXs are found near star-forming regions.
- We therefore consider a model in which old IMBHs capture main-sequence stars as they pass though star forming regions.

Results: Only low-mass stars will overfill their Roche-lobes before leaving the main sequence.

Analytically:

$$M_d/M_{Sun} < 1.4 \ \alpha_{cric}^{-1} \ (M_{BH}/100M_{Sun})^{1/7}$$

For likely values of α_{cric} and

$$50 M_{Sun} < M_{BH} < 1000 M_{Sun}$$

(m_d) : 1.25-2.7

For mass transfer from a main sequence star:

$$m_{dot} = 2.7 \times 10^{-11} M_{Sun} \text{ yr}^{-1} \text{ q}^{-2/3}$$

where $q=m_d/M_{BH}$

The observed luminosity is a direct measure of q.

The orbital period is a direct measure of m_d.

$$P=8.9 \text{ hr} (m_d/M_{Sun})$$

These systems will *not* be found near regions of star formation. If dynamical friction influences their orbits, they will be near the galaxy centers during the times of peak activity.

Giant Donors

- For giant donors the situation is more complex, as the core mass of the donor star also plays a role.
- Typical mass transfer rates are higher

- These systems should be found near star forming regions.
- Their orbital periods are generally longer.

Summary

- Galaxies are rich in SSSs and in QSSs.
- We are faced with the challenge of understanding the nature(s) of the members of each of these classes of X-ray sources.
- Some SSSs and some QSSs may be IMBHs.

Whatever the nature(s) of SSSs and QSSs

- IMBHs need not be ultraluminous.
- Binary evolution can provide important and testable predictions about the properties of accreting IMBHs.
- The further assumption that IMBHs capture stars in star forming regions leads to predictions about luminosity as a function of source location within galaxies and as a function of galaxy types.